用整型變量來實現PID算法,由于是用整型數來做的,所以也不是很精確,但是對于很多的使用場合,這個精度也夠了,關于系數和采樣電壓全部是放大10倍處理的.所以精度不是很高. 但是也不是那么低,大部分的場合都夠了. 實在覺得精度不夠, 可以再放大10倍或者100倍處理,但是要注意不超出整個數據類型的范圍就可以了.本程序包括PID計算和輸出兩部分.當偏差>10度全速加熱,偏差在10度以內為PID計算輸出.
具體的參考代碼參見下面:
*/
//================================================================
// pid.H
// Operation about PID algorithm procedure
// C51編譯器 Keil 7.08
//================================================================
// 作者:zhoufeng
// Date :2007-08-06
// All rights reserved.
//================================================================
#include
#include
typedef unsigned char uint8;
typedef unsigned int uint16;
typedef unsigned long int uint32;
/**********函數聲明************/
void PIDOutput ();
void PIDOperation ();
/*****************************/
typedef struct PIDValue
{
uint32 Ek_Uint32[3]; //差值保存,給定和反饋的差值
uint8 EkFlag_Uint8[3]; //符號,1則對應的為負數,0為對應的為正數
uint8 KP_Uint8;
uint8 KI_Uint8;
uint8 KD_Uint8;
uint16 Uk_Uint16; //上一時刻的控制電壓
uint16 RK_Uint16; //設定值
uint16 CK_Uint16; //實際值
}PIDValueStr;
PIDValueStr PID;
uint8 out ; // 加熱輸出
uint8 count; // 輸出時間單位計數器
/*********************************
PID = Uk KP*[E(k)-E(k-1)] KI*E(k) KD*[E(k)-2E(k-1) E(k-2)];(增量型PID算式)
函數入口: RK(設定值),CK(實際值),KP,KI,KD
函數出口: U(K)
//PID運算函數
********************************/
void PIDOperation (void)
{
uint32 Temp[3]; //中間臨時變量
uint32 PostSum; //正數和
uint32 NegSum; //負數和
Temp[0] = 0;
Temp[1] = 0;
Temp[2] = 0;
PostSum = 0;
NegSum = 0;
if( PID.RK_Uint16 > PID.RK_Uint16 ) //設定值大于實際值否?
{
if( PID.RK_Uint16 - PID.RK_Uint16 >10 ) //偏差大于10否?
{
PID.Uk_Uint16 = 100; } //偏差大于10為上限幅值輸出(全速加熱)
else
{
Temp[0] = PID.RK_Uint16 - PID.CK_Uint16; //偏差<=10,計算E(k)
PID.EkFlag_Uint8[1]=0; //E(k)為正數
//數值移位
PID.Ek_Uint32[2] = PID.Ek_Uint32[1];
PID.Ek_Uint32[1] = PID.Ek_Uint32[0];
PID.Ek_Uint32[0] = Temp[0];
/****************************************/
if( PID.Ek_Uint32[0] >PID.Ek_Uint32[1] ) //E(k)>E(k-1)否?
{
Temp[0]=PID.Ek_Uint32[0] - PID.Ek_Uint32[1]; //E(k)>E(k-1)
PID.EkFlag_Uint8[0]=0; } //E(k)-E(k-1)為正數
else
{
Temp[0]=PID.Ek_Uint32[0] - PID.Ek_Uint32[1]; //E(k)<E(k-1)
PID.EkFlag_Uint8[0]=1; } //E(k)-E(k-1)為負數
/****************************************/
Temp[2]=PID.Ek_Uint32[1]*2 ; // 2E(k-1)
if( (PID.Ek_Uint32[0] PID.Ek_Uint32[2])>Temp[2] ) //E(k-2) E(k)>2E(k-1)否?
{
Temp[2]=(PID.Ek_Uint32[0] PID.Ek_Uint32[2])-Temp[2]; //E(k-2) E(k)>2E(k-1)
PID.EkFlag_Uint8[2]=0; } //E(k-2) E(k)-2E(k-1)為正數
else
{
Temp[2]=Temp[2]-(PID.Ek_Uint32[0] PID.Ek_Uint32[2]); //E(k-2) E(k)<2E(k-1)
PID.EkFlag_Uint8[2]=1; } //E(k-2) E(k)-2E(k-1)為負數
/****************************************/
Temp[0] = (uint32)PID.KP_Uint8 * Temp[0]; // KP*[E(k)-E(k-1)]
Temp[1] = (uint32)PID.KI_Uint8 * PID.Ek_Uint32[0]; // KI*E(k)
Temp[2] = (uint32)PID.KD_Uint8 * Temp[2]; // KD*[E(k-2) E(k)-2E(k-1)]
/*以下部分代碼是講所有的正數項疊加,負數項疊加*/
/**********KP*[E(k)-E(k-1)]**********/
if(PID.EkFlag_Uint8[0]==0)
PostSum = Temp[0]; //正數和
else
NegSum = Temp[0]; //負數和
/********* KI*E(k)****************/
if(PID.EkFlag_Uint8[1]==0)
PostSum = Temp[1]; //正數和
else
; //空操作,E(K)>0
/****KD*[E(k-2) E(k)-2E(k-1)]****/
if(PID.EkFlag_Uint8[2]==0)
PostSum = Temp[2]; //正數和
else
NegSum = Temp[2]; //負數和
/***************U(K)***************/
PostSum = (uint32)PID.Uk_Uint16;
if(PostSum > NegSum ) // 是否控制量為正數
{ Temp[0] = PostSum - NegSum;
if( Temp[0] < 100 ) //小于上限幅值則為計算值輸出
PID.Uk_Uint16 = (uint16)Temp[0];
else
PID.Uk_Uint16 = 100; //否則為上限幅值輸出
}
else //控制量輸出為負數,則輸出0(下限幅值輸出)
PID.Uk_Uint16 = 0;
}
}
else
{ PID.Uk_Uint16 = 0; }
}
/*********************************
函數入口: U(K)
函數出口: out(加熱輸出)
//PID運算植輸出函數
********************************/
void PIDOutput (void)
{
static int i;
i=PID.Uk_Uint16;
if(i==0)
out=1;
else out=0;
if((count )==5)//如定時中斷為40MS,40MS*5=0.2S(輸出時間單位),加熱周期20S(100等份)
{ //每20S PID運算一次
count=0;
i--;
}
}